Biochemical characterization of the class B acid phosphatase (AphA) of Escherichia coli MG1655.

نویسندگان

  • Claudio Passariello
  • Costantino Forleo
  • Vanna Micheli
  • Serena Schippa
  • Rosalida Leone
  • Stefano Mangani
  • Maria Cristina Thaller
  • Gian Maria Rossolini
چکیده

The AphA enzyme of Escherichia coli, a molecular class B periplasmic phosphatase that belongs to the DDDD superfamily of phosphohydrolases, was purified and subjected to biochemical characterization. Kinetic analysis with several substrates revealed that the enzyme essentially behaves as a broad-spectrum nucleotidase highly active on 3'- and 5'-mononucleotides and monodeoxynucleotides, but not active on cyclic nucleotides, or nucleotides di- and triphosphate. Mononucleotides are degraded to nucleosides, and AphA apparently does not exhibit any nucleotide phosphomutase activity. However, it can transphosphorylate nucleosides in the presence of phosphate donors. Kinetic properties of AphA are consistent with structural data, and suggest a role for the hydrophobic pocket present in the active site crevice, made by residues Phe 56, Leu71, Trp77 and Tyr193, in conferring preferential substrate specificity by accommodating compounds with aromatic rings. AphA was inhibited by several chelating agents, including EDTA, EGTA, 1,10-phenanthroline and dipicolinic acid, with EDTA being apparently the most powerful inhibitor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a class B acid phosphatase in Haemophilus parasuis.

An acid phosphatase activity was detected in the supernatant of Haemophilus parasuis, a Gram-negative pleomorphic bacillus and the causative agent of Glässer's disease in pigs. To identify the gene responsible for the secreted activity, a genomic library of H. parasuis strain ER-6P was produced in Escherichia coli. Screening of the library allowed identification of two homologs to known phospha...

متن کامل

Study of Mutations in the DNA gyrase gyrA Gene of Escherichia coli

Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...

متن کامل

Study of Mutations in the DNA gyrase gyrA Gene of Escherichia coli

Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...

متن کامل

Characterization of β-Lactamases from Urinary Isolates of Escherichia coli in Tehran

Knowledge of antimicrobial resistance patterns in E. coli, the predominant pathogen associated with urinary tract infections (UTI) is important as a guide in selecting empirical antimicrobial therapy. Methods: To describe the antimicrobial susceptibility of E. coli associated with UTI in a major university hospital in Tehran (Iran), seventy-six clinical isolates of E. coli were studied for susc...

متن کامل

Induction of oxidative stress by high hydrostatic pressure in Escherichia coli.

Using leaderless alkaline phosphatase as a probe, it was demonstrated that pressure treatment induces endogenous intracellular oxidative stress in Escherichia coli MG1655. In stationary-phase cells, this oxidative stress increased with the applied pressure at least up to 400 MPa, which is well beyond the pressure at which the cells started to become inactivated (200 MPa). In exponential-phase c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1764 1  شماره 

صفحات  -

تاریخ انتشار 2006